Best Rank-One Tensor Approximation and Parallel Update Algorithm for CPD

نویسندگان

  • Anh Huy Phan
  • Petr Tichavský
  • Andrzej Cichocki
چکیده

A novel algorithm is proposed for CANDECOMP/PARAFAC tensor decomposition to exploit best rank-1 tensor approximation. Different from the existing algorithms, our algorithm updates rank-1 tensors simultaneously in-parallel. In order to achieve this, we develop new all-at-once algorithms for best rank-1 tensor approximation based on the Levenberg-Marquardt method and the rotational update. We show that the LM algorithm has the same complexity of first-order optimisation algorithms, while the rotational method leads to solve the best rank-1 approximation of tensors of size 2× 2× · · · × 2. We derive closedform expression of best rank-1 tensor of 2× 2× 2 tensors, and present an ALS algorithm which updates 3 component at a time for higher order tensors. The proposed algorithm is illustrated in decomposition of difficult tensors which are associated with multiplications of two matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Best Rank-One Approximation Ratio of a Tensor Space

Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-o...

متن کامل

Tensor Decompositions with Banded Matrix Factors

The computation of themodel parameters of a Canonical Polyadic Decomposition (CPD), also known as the parallel factor (PARAFAC) or canonical decomposition (CANDECOMP) or CP decomposition, is typically done by resorting to iterative algorithms, e.g. either iterative alternating least squares type or descent methods. In many practical problems involving tensor decompositions such as signal proces...

متن کامل

Error Preserving Correction for CPD and Bounded-Norm CPD

In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, e.g., when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such the cases, norms of some rank-1 terms become significantly large, and cancel each other. This makes algorithms getting ...

متن کامل

Tensor Deflation for CANDECOMP/PARAFAC. Part 3: Rank Splitting

CANDECOMP/PARAFAC (CPD) approximates multiway data by sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of the rank-1 components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor...

متن کامل

Canonical Polyadic Decomposition with Orthogonality Constraints

Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint and generalize the result to the case where one of the factor matrices has full colum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.08336  شماره 

صفحات  -

تاریخ انتشار 2017